skip to main content


Search for: All records

Creators/Authors contains: "Nosé, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Auroral arcs and diffuse auroras are common phenomena at high latitudes, though characteristics of their source plasma and fields have not been well understood. We report the first observation of fields and particles including their pitch‐angle distributions in the source region of auroral arcs and diffuse auroras, using data from the Arase satellite atL ~ 6.0–6.5. The auroral arcs appeared and expanded both poleward and equatorward at local midnight from ~0308 UT on 11 September 2018 at Nain (magnetic latitude: 66°), Canada, during the expansion phase of a substorm, while diffuse auroras covered the whole sky after 0348 UT. The top part of auroral arcs was characterized by purple/blue emissions. Bidirectional field‐aligned electrons with structured energy‐time spectra were observed in the source region of auroral arcs, while source electrons became isotropic and less structured in the diffuse auroral region afterwards. We suggest that structured bidirectional electrons at energies below a few keV were caused by upward field‐aligned potential differences (upward electric field along geomagnetic field) reaching high altitudes (~30,000 km) above Arase. The bidirectional electrons above a few keV were probably caused by Fermi acceleration associated with the observed field dipolarization. Strong electric‐field fluctuations and earthward Poynting flux were observed at the arc crossing and are probably also caused by the field dipolarization. The ions showed time‐pitch‐angle dispersion caused by mirror reflection. These results indicate a clear contrast between auroral arcs and diffuse auroras in terms of source plasma and fields and generation mechanisms of auroral arcs in the inner magnetosphere.

     
    more » « less
  2. Abstract

    We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])‐B satellites. On 30 March 2017, both Arase and RBSP‐B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. Arase did not observe Pc5 pulsations, while they were observed by RBSP‐B. The clear dispersion signature of the relativistic electron fluctuations observed by Arase indicates that the source region is limited to the postnoon to the dusk sector. This is confirmed by RBSP‐B and ground‐magnetometer observations, where Pc5 pulsations are observed to drift‐resonate with relativistic electrons on the duskside. Thus, Arase observed the drift‐resonance signatures “remotely,” whereas RBSP‐B observed them “locally.”

     
    more » « less